Radiactividad

La radiactividad fue descubierta por el científico francés Antoine Henri Becquerel en 1896 de forma casi ocasional al realizar investigaciones sobre la fluorescencia del sulfato doble de uranio y potasio. Descubrió que el uranio emitía espontáneamente unaradiación misteriosa. Esta propiedad del uranio, después se vería que hay otros elementos que la poseen, de emitir radiaciones, sin ser excitado previamente, recibió el nombre de radiactividad.
El descubrimiento dio lugar a un gran número de investigaciones sobre el tema. Quizás las más importantes en lo referente a la caracterización de otras sustancias radiactivas fueron las realizadas por el matrimonio, también francés, Pierre y Marie Curie, quienes descubrieron el polonio y el radio, ambos en 1898.
La naturaleza de la radiación emitida y el fenómeno de la radiactividad fueron estudiados en Inglaterra por Ernest Rutherford, principalmente, y por Frederick Soddy. Como resultado pronto se supo que la radiación emitida podía ser de tres clases distintas, a las que se llamó alfa, beta y gamma, y que al final del proceso el átomo radiactivo original se había transformado en un átomo de naturaleza distinta, es decir, había tenido lugar una transmutación de una especie atómica en otra distinta. También se dice (y esta es la terminología actual) que el átomo radiactivo ha experimentado una desintegración.
La radiactividad es una reacción nuclear de "descomposición espontánea", es decir, un nucleido inestable se descompone en otro más estable que él, a la vez que emite una "radiación". El nucleido hijo (el que resulta de la desintegración) puede no ser estable, y entonces se desintegra en un tercero, el cual puede continuar el proceso, hasta que finalmente se llega a un nucleido estable. Se dice que los sucesivos nucleidos de un conjunto de desintegraciones forman una serie radiactiva o familia radiactiva.
Se puede considerar que todos los isótopos de los elementos con número atómico igual o mayor a 84 (el polonio es el primero de ellos) son radiactivos (radiactividad natural) pero que, actualmente, se pueden obtener en el laboratorio isótopos radiactivos de elementos cuyos isótopos naturales son estables (radiactividad artificial).
La primera obtención en el laboratorio de un isótopo artificial radiactivo (es decir, el descubrimiento de la radiactividad artificial) la llevó a cabo en 1934 el matrimonio formado por Fréderic Joliot e Irene Curie, hija del matrimonio Curie.

TEMA: EFECTOS DE LA RADIACTIVIDAD SOBRE LOS SERES VIVOS:

Tipos de radiación:

Rutherford descubrió que las emisiones radiactivas contienen al menos dos componentes: partículas alfa, que sólo penetran unas milésimas de centímetro, y partículas beta, que son casi 100 veces más penetrantes. En experimentos posteriores se sometieron las emisiones radiactivas a campos eléctricos y magnéticos, y de esta forma se descubrió que había un tercer componente, los rayos gamma, que resultaron ser mucho más penetrantes que las partículas beta.

Efectos sobre el hombre: Según la intensidad de la radiación y su localización (no es lo mismo una exposición a cuerpo entero que una sola zona), el enfermo puede llegar a morir en el plazo de unas horas a varias semanas. Y en cualquier caso, si no sobreviene el fallecimiento en los meses siguientes, el paciente logra recuperarse, sus expectativas de vida habrán quedado sensiblemente reducidas.

Los efectos nocivos de la radioactividad son acumulativos. Esto significa que se van sumando hasta que una exposición mínima continua se convierte en peligrosa después de cierto tiempo. Exposiciones a cantidades no muy altas de radioactividad por tiempo prolongado pueden resultar en efectos nefastos y fatales para el ser humano. La siguiente lista describe la condiciones que se pueden expresar cuando uno es víctima de enfermedad por radiación.
náuseas
vómitos
convulsiones
delirios
dolores de cabeza
diarrea
perdida de pelo
perdida de dentadura
reducción de los glóbulos rojo en la sangre
reducción de glóbulos blancos en la sangre
daño al conducto gastroinstestinal
perdida de la mucosa de los intestinos
hemorragias
esterilidad
infecciones bacterianas
cáncer
leucemia
cataratas
daño genéticos
mutaciones genéticas
niños anormales
daño cerebral
daños al sistema nervioso
cambio de color de pelo a gris


Aplicación en minería.

Al aplicarse ionización en la búsqueda de materiales mineros (metales preciosos), el uso de esta facultad de algunas sustancias químicas es favorable para el uso humano. Aunque es un método de elevados costos, la exactitud de la radiactividad para hacer reaccionar algunos metales es sorprendente.

En el caso de Oro, se utiliza Cesio 13 o 14 para hacer reaccionar este metal en una frecuencia ultravioleta: Se magnetiza una potencial veda para hacerla reaccionar en la oscuridad. (El Oro bombardeado por Cesio brilla con luz propia).

Otra aplicación de la radiactividad se ve manifestada en el uso que se le aplica al Uranio 248: Para lograr que algunos procesos de Electrolisis, como con el Aluminio o el Platino, sean mas precisos y el resultado de este proceso mas puro, se irradian terrenos con este metal para que, luego de hacer correr corrientes eléctricas, la proporción de pureza sea mas exacta.

Aplicaciones industriales.

Probablemente sea menos conocida la función que desempeña la radiación en la industria y la investigación. La inspección de soldaduras, la detección de grietas en met

VÍDEO DE LA RADIACTIVIDAD 


VÍDEO DE LA RADIACTIVIDAD COMO FORMA DE TRABAJO
MINERO


VÍDEO DE LA RADIACTIVIDAD EFECTOS EN LOS SERES HUMANOS



scribd radiactividad 

slideshare



RADIOACTIVIDAD from Irene Andrea

EJERCICIOS DE LA RADIACTIVIDAD

Ejercicio nº1

partícula que confirmaba la existencia del neutrón. En 1932, el inglés Chadwick bombardeó Be con partículas α, apareciendo un nueva 9 4

a) ¿De dónde se obtienen las partículas α?

b) Escribir el proceso descrito.

Solución

a) De fuentes radiactivas, en este caso el Polonio.

b) Be + C + n

Problema nº2

El U inicia una serie radiactiva cuyos primeros emisores son: α,β,β,α,α,α,α. 238 92

Escribir todos los procesos que tienen lugar.

Solución

U Th Pa U Th Ra Rn Po.

No hay comentarios:

Publicar un comentario